

AO «PACY»

Отраслевой интегратор бизнеса Госкорпорации «Росатом»

Докладчик: А.Б. Бутко Генеральный директор АО «РАСУ»

Краткое содержание презентации АО «РАСУ» для ЭЭС СНГ

- 1. Что такое АО «Русатом Автоматизированные системы управления» (АО «РАСУ»).
- 2. Ключевые компетенции компании.
- 3. Научно-производственный потенциал и компании участники бизнеса.
- 4. Опыт и референции.
- 5. Предложения для потенциальных Заказчиков.
- 6. Перспективы сотрудничества с Электроэнергетическим Советом СНГ.

Что такое АО «РАСУ»

АО «Русатом Автоматизированные системы управления» – образована на базе АО «ВНИИАЭС» в 2015 году и является дочерней структурой Госкорпорации «Росатом».

В первый год существования компания запустила бизнес АСУ ТП, получила статус главного конструктора АСУ ТП любых технологических объектов, в том числе АЭС всех типов, был дан старт реализации продуктовой стратегии в части неатомных рынков.

В 2016 г. АО «РАСУ» приняло участие в реализации ряда контрактов на поставку АСУ ТП для АЭС Куданкулам в Индии, АЭС Ханхикиви в Финляндии, АЭС ПАКШ-2 в Венгрии.

Ключевые компетенции АО «РАСУ»:

- продукты АСУ ТП на всех этапах жизненного цикла: проектирование, производство, поставка, модернизация, сервис, вывод из эксплуатации;
- консолидация отраслевых ресурсов с целью увеличения выручки и портфеля заказов Госкорпорации «Росатом» на зарубежных и неатомных рынках;
- выход на рынок сбыта электротехнического оборудования (ЭТО), производимого на предприятиях, входящих в контур Госкорпорации «Росатом» через реализацию комплексных решений «под ключ»;
- импортозамещение и локализация производства программно-технических средств и оборудования иностранного производства на предприятиях, входящих в контур Госкорпорации «Росатом»;
- повышение конкурентоспособности и развитие продуктовой линейки.

Что такое АО «РАСУ»

Более **60** лет успешного опыта исследовательских и производственных организаций (АО «ВНИИАЭС»)

Более **2300** чел., занятых в бизнесе АСУ ТП

Более **20** лет опыта в разработке и внедрении аппаратно-программных средства телемеханики и автоматики

500 специалистов высочайшего уровня, из них **350** инженеров

Более **600** объектов трубопроводного транспорта России было автоматизировано РАСУ как интегратором бизнеса

Точность, безопасность, надежность – вот почему эти системы востребованы в других отраслях промышленности

Более **70** блоков и более **20** энергоблоков оборудованы нашими АСУ ТП

Широкий спектр современных технологий и решений, богатый опыт и знания ГК «Росатом»

Научно-производственный потенциал Госкорпорации «Росатом»

более 20 институтов и предприятий, разрабатывающих и участвующих в изготовлении современных систем АСУ ТП АЭС и подстанций, а также электротехнического оборудования

Опорные организации атомной отрасли:

- **РАСУ** интегратор бизнесов «Электротехника» и «АСУ ТП».
- ВЭИ комплексные исследования, испытания, разработки, опытные образцы.
- ВНИИТФ, ЭХП, УЭМЗ, Север, Старт современное электрооборудование двойного и общего назначения.
- НИИЭФА, НИИТФА, Русский сверхпроводник сверхпроводниковая индустрия.
- НИИИС, ВНИИА современное оборудование для автоматизации.
- **ВНИИХТ** материалы для фотопреобразователей (солнечный поликремний)
- НИИграфит композитные материалы.
- и другие предприятия атомной отрасли.

Технологические партнеры

Компетенции предприятий атомной отрасли и сторонних партнеров позволяют выполнять комплексные проекты по сооружению электросетевых объектов «под ключ»

Участники бизнеса

«РОСАТОМ » ПРЕДПРИЯТИЕ ГОСКОРПОРАЦИИ «РОСАТОМ »

АО «РАСУ», как ответственный интегратор бизнеса по направлениям АСУ ТП и «Электротехника», в целях развития внутриотраслевой кооперации и загрузки предприятий, входящих в контур Госкорпорации «Росатом» обеспечивает участие в реализации комплексных решений «под ключ» максимального количества участников бизнеса.

Наши основные конкурентные преимущества

Многолетний опыт работы в отрасли

Интегратор бизнеса по направлениям АСУ ТП и «Электротехника» Госкорпорации «Росатом»

Реализация проектов «под ключ»

Оптимальное соотношение цена/качество

Ответственное отношение к требованиям заказчика к срокам и качеству

Контракт жизненного цикла

Взаимодействие с заказчиком на всех этапах работ от Т3 до сдачи объекта

АСУ ТП АЭС российского дизайна

Список референций коллектива АО «РАСУ» в части проектирования устройств ПА с учетом опыта АО «ВНИИАЭС»

год	объекты
2006	Реконструкция системы противоаварийной автоматики Загорской ГЭС в связи с переводом
	присоединений на общее КРУЭ 500 кВ Загорской ГАЭС и Загорской ГАЭС-2
2008	Реконструкция противоаварийной автоматики ВЛ 750 кВ Калининская АЭС - ПС Ленинградская со стороны Калининской АЭС
2008	Реконструкция противоаварийной автоматики ПС Южная г. Санкт-Петербург.
2009	Разработка проекта реконструкции ПА ПС 110 кВ Кингисепп-2
2009	Разработка проекта реконструкции ПА ПС 220 кВ Свобода и прилегающей сети
2010	Модернизация ПА Балаковской АЭС в связи с вводом линии БАЭС - Курдюм
2010	Реконструкция противоаварийной автоматики на ПС 750 кВ Белозерская, ПС 220 кВ Пошехонье, ПС 220 кВ РПП-1, ПС 220 кВ РПП-2 в связи с перезаводом ВЛ 220 кВ Энергия 3, ВЛ 220 кВ Пошехонье – Череповец 1 и ВЛ 220 кВ Первомайская с заходами на ПС 220 кВ РПП-1.
2010	Разработка проекта ПА ПС 750кВ Белозерская в связи с установкой второго автотрансформатора 750/500кВ
2010	Проект реконструкции ПА на ПС 500 кВ Калино для ввода ВЛ 500 кВ Северная-БАЗ
2010	Разработка проекта ПА II этапа реконструкции комплекса ПА ПС 750 кВ Калужская
2010	Разработка проекта реконструкции ПА ПС 750 кВ Ленинградская в связи с установкой второго АТ 330/110 кВ
2010	Реконструкция противоаварийной автоматики ПС 220 кВ Цементная
2011	Реконструкция ПА ПС Московка и объектов Омской ЭС
2011	Реконструкция противоаварийной автоматики ПС Белозерская
2011	Разработка проекта по ПА ВЛ 220 кВ Маккавеево – Багульник – Чита, ПС 220 кВ Багульник с заходами ВЛ 110 кВ
2011	Разработка проекта ПА II этапа реконструкции комплекса ПА ПС 220 кВ Гумрак
2011	Разработка проекта реконструкции ПА Серебрянской ГЭС 15 в связи со строительством ПС 330 кВ Мурманская
2011	Разработка проекта реконструкции ПА ПС 330 кВ Новая

Список референций коллектива АО «РАСУ» в части проектирования устройств ПА с учетом опыта АО «ВНИИАЭС»

2011	Разработка проекта реконструкции ПА ПС 500 кВ Череповецкая и прилегающей сети
2011	Разработка рабочей документации для комплекса ПА энергоузла Калининской АЭС в связи с вводом энергоблока №4».
2012	Реконструкция ПА ПС Колпино
2012	Разработка проекта ПА КВЛ 330 кВ Ленинградская АЭС-2 - Пулковская - Южная
2012	Реконструкция противоаварийной автоматики ВЛ 500 кВ Костромская ГРЭС – Загорская ГАЭС со стороны Костромской ГРЭС
2012	Реконструкция противоаварийной автоматики ОРУ 750 кВ и ВЛ 750 кВ Курской АЭС
2012	Корректировкой проекта № 0043-ПА-Т5.5 «ПС 330 кВ Василеостровская с КЛ 330 кВ Западная –
	Василеостровская - Северная, КЛ 330 кВ Василеостровская - Завод Ильич в г.Санкт-Петербурге» (
	ООО «Проектный Центр Энерго», 2011 г.) в части противоаварийной автоматики (ПА).
2012	Разработка проекта ПА II этапа реконструкции комплекса ПА ПС 220 кВ Киров
2012	Разработка проекта реконструкции ПА ПС 220 кВ Краснотурьинск
2012	ТЭО по реконструкции противоаварийной автоматики района ПС Сызрань
2013	Противоаварийная автоматика, СМПР Нововоронежской АЭС-2 с блоками №1, №2
2013	НИР по повышению пропускной способности транзита Север-Юг Казахстана
2013	Разработка проекта реконструкции ПА ПС 750 кВ Опытная
2014	Реконструкция системы противоаварийной автоматики, телемеханики Нурекской ГЭС и ПС Регар (Таджикистан)
2014	Схема выдачи мощности (в части ПА) опытно-демонстрационного энергоблока с реактором на
	быстрых нейтронах со свинцовым теплоносителем БРЕСТ-ОД-300
2014	Балансы и режимы РУ 500 кВ Чебоксарской ГЭС
2014	Корректировка проектной документации Балансы и режимы РУ 500 кВ Чебоксарской ГЭС
2015	Разработка проекта по ПА и СМПР АЭС Аккую
2015	Комплексная реконструкция оборудования выдачи мощности Нижегородской ГЭС
2016	Реконструкция противоаварийной автоматики Троицкой ГРЭС в связи с вводом блока №10

Список референций коллектива АО «РАСУ» в части проектирования устройств РЗА с учетом опыта АО «ВНИИАЭС»

Год	Объект	Статус
1994	Подстанция 220 кВ «Сабурово» Мосэнерго – СКУ ЭЧ на базе ТК 113 «под ключ»	промышленная эксплуатация
1999	ТЭЦ-12 Мосэнерго – РЗ и СКУ ЭЧ на базе SINAUT LSA (Siemens) «под ключ»	промышленная эксплуатация
1999	ТЭЦ-9 Мосэнерго – P3 Siemens «под ключ»	промышленная эксплуатация
2004	Калининская АЭС, энергоблок №3 – СКУ ЭЧ на базе ТПТС «под ключ»	промышленная эксплуатация
2009	ТЭЦ-27 Мосэнерго – Комплекс проектных и инжиниринговых работ в рамках создания систем РЗ и СКУ ЭЧ»	промышленная эксплуатация
2010	АЭС «Куданкулам» с энергоблоками №1, №2 и системой выдачи мощности (СВМ) – Комплекс проектных и инжиниринговых работ по созданию систем РЗ и СКУ ЭЧ»	промышленная эксплуатация
2013	Загорская ГАЭС-2 – Проектная и рабочая документация по РЗ гидроагрегатов»;	выведена из работы
2015	Белоярская АЭС-2, энергоблок №4, CBM – Разработка технического проекта, комплекс инжиниринговых работ по созданию системы СКУ ЭЧ CBM»	промышленная эксплуатация
наст. время	Нововоронежская АЭС-2, энергоблоки №1, №2, СВМ – Проектные работы, изготовление и поставка оборудования РЗ и СКУ ЭЧ	ПНР
наст. время	Ленинградская АЭС-2, энергоблоки №1, №2, CBM – Проектные работы, изготовление и поставка СКУ ЭЧ, СОТИ АССО, СМПР	Изготовление

Список референций коллектива АО «РАСУ» в части проектирования устройств АСУ ТП с учетом опыта АО «ВНИИАЭС»

1994 г.	Подстанция 220 кВ «Сабурово» Мосэнерго	РЗ и СКУ ЭЧ на базе ТК 113 (г. Нальчик) «под ключ»	В промышленной эксплуатации
1999 г.	ТЭЦ-12 Мосэнерго	РЗ и СКУ ЭЧ на базе SINAUT LSA (Siemens) «под ключ»	В промышленной эксплуатации
1999 г.	ТЭЦ-9 Мосэнерго	РЗ и СКУ ЭЧ на базе SINAUT LSA (Siemens) «под ключ»	В промышленной эксплуатации
2004 г.	Калининская АЭС, энергоблок 3	СКУ ЭЧ на базе ТПТС «под ключ»	В промышленной эксплуатации
2009 г.	ТЭЦ-27 Мосэнерго	Комплекс проектных и инжиниринговых работ в рамках создания систем РЗ и СКУ ЭЧ	В промышленной эксплуатации
2010 г.	АЭС «Куданкулам»	Комплекс проектных и инжиниринговых работ по созданию систем РЗ и СКУ ЭЧ энергоблоков 1, 2 и системы выдачи мощности (СВМ)	В промышленной эксплуатации
2011 г.	Белоярская АЭС - 2	Разработка, изготовление и поставка СКУ ЭЧ энергоблока 4 и системы выдачи мощности.	В промышленной эксплуатации
2017 г.	Нововоронежская АЭС - 2	Разработка, изготовление и поставка СКУ ЭЧ энергоблоков 6, 7 и системы выдачи мощности, СОТИ АССО	В промышленной эксплуатации (энергоблок 7 - ПНР)
2017 г.	Ленинградская АЭС - 2	Разработка, изготовление и поставка СКУ ЭЧ системы выдачи мощности, СОТИ АССО, СМПР.	В промышленной эксплуатации (энергоблок 7 - ПНР)
2017 г.	АЭС «Куданкулам»	Разработка, изготовление и поставка СКУ ЭЧ энергоблоков 3, 4	Разработка

Предложения АО «РАСУ» для потенциальных заказчиков

Автоматизация электрической части

• Объекты автоматизации:

- генерация (АЭС, ТЭС, ГЭС/ГАЭС);
- распределение и передача электроэнергии (ПС, сети).

• Электрическая часть:

- схема выдачи мощности станции;
- главная электрическая схема станции/ПС;
- собственные нужды станций (КРУ 6(10) кВ, НКУ 0,4 кВ);
- системы питания оперативного тока (ЩПТ, АБП и т.д.).

• Автоматизация:

- релейная защита и автоматика (РЗиА);
- система контроля и управления электрической части (СКУ ЭЧ);
- противоаварийная автоматика (ПА);
- система обмена технологической информации с автоматизированной системой системного оператора (СОТИ АССО);
- система мониторинга переходных процессов (СМПР);
- автоматизированная информационно-измерительная система коммерческого/ технического учета электроэнергии (АИИС КУЭ/ТУЭ).

Расчеты электрических режимов, токов K3, P3A и ПА

- Расчеты балансов мощности и электроэнергии в разрезе энергоузлов и энергосистем;
- Расчеты нормальных и послеаварийных электроэнергетических режимов потокораспределения и уровней напряжения;
- Расчеты статической и динамической устойчивости энергосистем;
- Схемы выдачи мощности электрических станций (СВМ) (в том числе формирование предложений по корректировке схем выдачи мощности электростанций с учетом ввода нового энергетического оборудования);
- Технико-экономические обоснования строительства, реконструкции и технического перевооружения;
- Комплексный анализ эксплуатации и разработка рекомендаций по повышению надежности эксплуатируемых ВЛ (КЛ) и подстанций;
- Расчеты токов короткого замыкания и разработка мероприятий по их ограничению;
- Расчеты уставок релейной защиты и противоаварийной автоматики;
- Расчеты специфических электрических режимов для определения специальных требований к элегазовым выключателям (расчеты режимов АПВ ВЛ с различными комбинациями включенных линейных ШР с учетом апериодической составляющей, расчеты режимов одностороннего включения режимов холостого хода и режимов работы в цикле ТАПВ ВЛ с целью проверки возможности возникновения апериодической составляющей тока при несимметричных КЗ и оценки ее параметров в суммарном токе холостого хода линии);
- Составление и анализ балансов реактивной мощности с целью определения мест и объема установки средств компенсации реактивной мощности, устройств FACTS и элементов активно-адаптивных сетей;
- Решение задач противоаварийной автоматики и АРЧМ «под ключ»: от ТЭО до внедрения на объекте;
- Расчеты перспективных электрических режимов для оценки возможности инновационного развития ОЭС с установкой элементов активно-адаптивных сетей (УШР, УУПК, СТАТКОМ, ФПУ, СКРМ и пр.);

Комплексные решения по направлению «Электротехника» «под ключ»

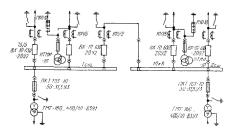
Комплектные трансформаторные подстанции (КТП)

Основные конфигурации:

- КТП 220/110/35/6 (10кВ). РУ-35кВ закрытого типа
- КТП 220/110/35/6 (10кВ). РУ-35кВ открытого типа
- КТП 110/35/6 (10кВ). РУ-35кВ закрытого типа
- КТП 110/35/6 (10кВ). РУ-35кВ открытого типа
- КТП 35/6 (10кВ). РУ-35кВ закрытого типа
- КТП 35/6 (10кВ). РУ-35кВ открытого типа
- КТП 6/0,4кВ. 630-3200кВ

Потребители:

- ОАО «Россети»
- Крупные машиностроительные предприятия
- Нефтегазоперерабатывающие и добывающие предприятия
- Городское электросетевое хозяйство


Дополнительная продукция:

- Блок ОРУ-220кВ
- Блок ОРУ-110кВ
- Блок ОРУ-35кВ
- БМЗ для КРУ-35кВ
- БМЗ для КРУ-6 (10)кB
- Здание ОПУ

Технологическое присоединение «под ключ»

Основные услуги:

- Получение ТУ на техприсоединение;
- Разработка схемы внешнего электроснабжения;
- Проектирование подстанций и ЛЭП;
- Поставка оборудования;
- Организация строительно-монтажных работ.

Дополнительные услуги:

- Согласование с собственником сетевой инфраструктуры;
- Определение балансовых границ;
- Получение ИРД и землеустройство:
- Сдача работ Ростехнадзору;
- Выбор энергосбытовой организации.

Комплексные решения по направлению «Электротехника» «под ключ»

Низковольтные комплектные распределительные устройства (НКУ)

Модификации:

- щиты распределения энергии;
- шкафы, щиты автоматизации;
- стойки КИП;
- пульты оператора;
- щиты освещения;
- стойки серверов;
- крановые панели;
- кроссовые шкафы.

Характеристики	НКУ
Одностороннего или двухстороннего обслуживание	да
Степень защиты по ГОСТ 14254	IP31, IP41, IP43, IP54
Климатическое исполнение	УХЛ3.1 и Т3
Класс безопасности по НП-001-97	2 (2O, 2Y)
Номинальные рабочие напряжения главных цепей, В	380; 660
Номинальный ток шкафа ввода питания электроприводов запорной аппаратуры	до 160А

Ком

Комплектные распределительные устройства 6-10 кВ (КРУ)

Характеристики	КРУ 6-10
Номинальное напряжение (линейное, кВ)	6,10
Номинальный ток сборных шин, А	630, 1000, 1250, 1600, 2000, 2500, 3150, 4000
Номинальный ток отключения, кА	20, 31.5, 40
Номинальный ток электродинамической стойкости главных цепей, кА	51, 82, 102, 128

Преимущества:

- Повышенная жесткость конструкции
- Использование вакуумных выключателей с коммутационным
- ресурсом: до 30 000 циклов ВО
- Применение устройств микропроцессорной защиты от ведущих производителей

Комплексные решения по направлению «Электротехника» «под ключ»

Элегазовые измерительные трансформаторы тока 110-220 кВ

РОССЕТИ

Аттестовано Россети

Передача сигнала измерительным приборам, устройствам защиты и управления в открытых распределительных устройствах в сетях трехфазного переменного тока при номинальном напряжении 110 - 220 кВ

Характеристики	TT 110 кВ	TT 220 кВ
U ном., кВ	110	220
U нр., кВ	126	252
Сейсмостойкость, баллов по шкале MSK 64 9		9
Класс точности вторичных обмоток для измерений 0,2; 0,2S; 0,5; 0,5S		0,5; 0,5S
Класс точности вторичных обмоток для защиты 5P,10P		10P
Годовая утечка элегаза, не более 0,5%		5%
Избыточное давление элегаза, Мпа		± 0,01

Комплексные решения по направлению «Электротехника» «под ключ» Перспективные и инновационные решения

Элегазовое и вакуумное коммутационное оборудование

КРУЭ и газоизолированные линии 110-500 кВ (локализация Siemens)

Элегазовые выключатели 110-750 кВ

Элегазовые ТН 110-750 кВ

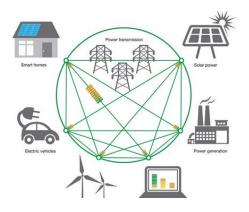
Вакуумные выключатели на основе собственной дугогасительной камеры (баковые и колонковые) 110-220 кВ

Сверхпроводниковые линии электропередачи и устройства (ВТСП)

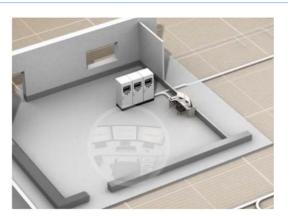
ВТСП токопроводы

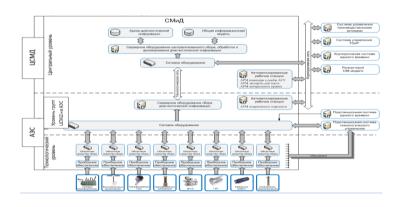
Быстродействующие выключатели и ограничители тока 3,5 – 500 кВ

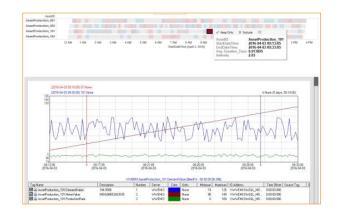
Индуктивные и кинетические накопители энергии



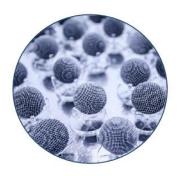
Трансформаторы


Комплексные решения по направлению «Электротехника» «под ключ» Перспективные и инновационные решения


Управляемые сети постоянного тока


У Цифровые подстанции

Автоматизированная система мониторинга ЭТО


У Центр экспертной диагностики ЭТО

Мониторинг, оценка технического ресурса, продление сроков эксплуатации ЭТО

Комплексные решения по направлению «Электротехника» «под ключ» Перспективные и инновационные решения

Аддитивные технологии

Цифровая платформа

Робототехника

Умный город¹

Накопители энергии

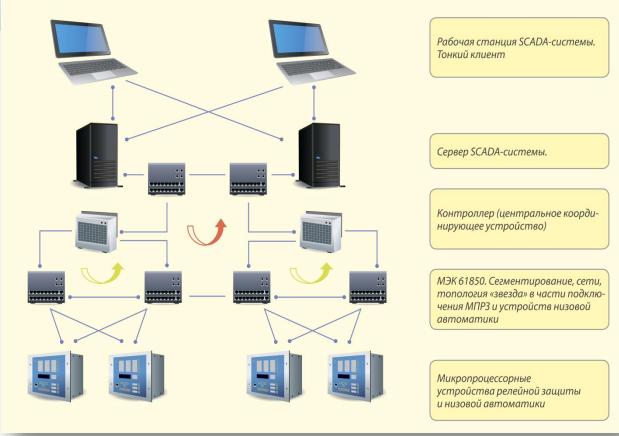
Энергосистемы на основе высокотемпературных сверхпроводников

Новые/композитные материалы

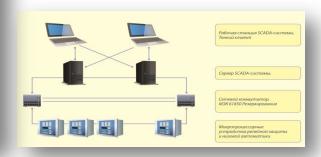
Комплексные решения по направлению «Электротехника» «под ключ» Создание центрального диспетчерского пункта управления подстанцией

Конкурентные преимущества:

- Опыт сооружения диспетчерских пунктов на АЭС (БПУ, РПУ, ЗПУ, ЦДПС ПС) в соответствии с высокими требованиями надежности и безопасности;
- Сооружение тренажеров щитов управления;
- Обучение персонала в учебных центрах на отраслевых предприятиях ГК «Росатом».



Система контроля и управления электрической части (СКУ ЭЧ)


СКУ ЭЧ - обеспечивает оперативный контроль и управление электротехническим оборудованием с централизованного пункта

Основные характеристики:

- высокая скорость и надежность (контроллеры, резервированные серверы SCADA-системы);
- сегментирование сети;
- единый протокол обмена на всех уровнях системы (МЭК 61850 или МЭК 60870-5-104);
- сетевая структура полевого уровня

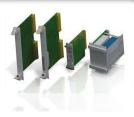
 «звезда», возможно использование двойного оптического кольца;
- количество устройств полевого уровня до 500

АО «РАСУ» - комплексные решения в части АСУ ТП «под ключ»

Обследование объекта

Проектирование

Изготовление, поставка и монтаж


Комплексная наладка **Сервисное** обслуживание

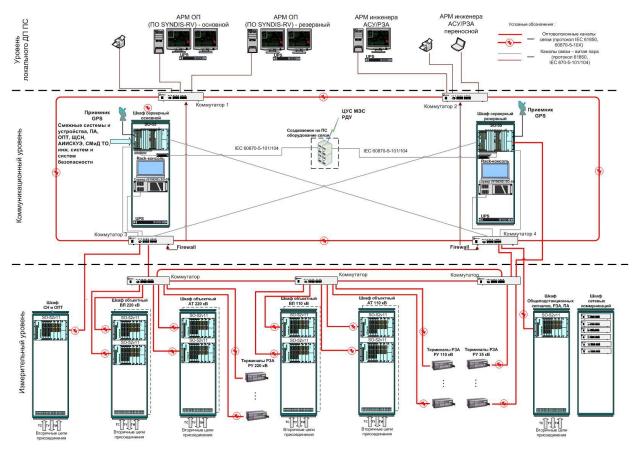
- Разработка техникоэкономических обоснований внедрения тех или иных решений
- Консультации по вопросам автоматизации в части программнотехнических средств, технологических и электро-технических решений
- Разработка контрактных требований

- Разработка технического задания на АСУ ТП и ЭТО
- Разработка исходных данных для проектирования
- Разработка алгоритмического, математического обеспечения
- Разработка прикладного программного обеспечения
- Разработка проектносметной документации

- Изготовление оборудования АСУ ТП и ЭТО
- Проведение полигонных испытаний
- Поставка оборудования на Объект
- Монтаж поставляемого Оборудования

- Автономная наладка ПТК
- Наладка оборудования КИПиА
- Комплексная наладка основных функций АСУ ТП: сбор и обработка входных сигналов
- Дистанционное управление арматурой, защиты и блокировки, основные регуляторы
- Испытания и ввод в эксплуатацию АСУ ТП и ЭТО

- Обучение персонала Заказчика
- Разработка и внедрение компьютерных тренажеров оперативного персонала
- Гарантийное и постгарантийное обслуживание АСУ ТП и ЭТО


АО «РАСУ»

Заключение контракта жизненного цикла – от проектирования до ввода в эксплуатацию.

Автоматизированная система управления технологическими процессами

АСУ ТП: обеспечивает оперативный контроль и управление оборудованием с централизованного пункта

Основные характеристики:

- высокая скорость и надежность (контроллеры, резервированные серверы SCADA-системы);
- сегментирование сети;
- единый протокол обмена на всех уровнях системы (МЭК 61850/МЭК 60870-5-104);
- сетевая структура полевого уровня –двойное оптическое кольцо, все связи с полевыми устройствами резервируются;

Платформы для автоматизации

Система	Платформа
СКУ ЭЧ	Контроллеры – SICAM 1703 (SIEMENS), ИП – ЭНИП (Энергосервис), SCADA – WinCC (SIEMENS)
РЗиА	Siprotec (SIEMENS), Micom (Alstom/GE), Sepam (SE), НПП ЭКРА, ИЦ Бреслер, Радиус-автоматика
ПА	МКПА, МКПА-2 (ProSoft Systems), НПП ЭКРА, ЭЗАН
СОТИ АССО	Контроллеры – SICAM 1703 (SIEMENS), PAC – Аура (СВЭЙ), РП11 (Парма) и др., ИП – ЭНИП (Энергосервис), SCADA – WinCC (SIEMENS)
СМПР	УВИ (ProSoft Systems), МИП (РТСофт), PDC (AlteroPower)
АИИС КУЭ	Альфа, АльфаЦентр (Elster Метроника)

Комплексные Системы безопасности

комплексные системы безопасности

системы охраны периметра и помещений

системы охраны для перевозок спецгрузов

системы контроля и управления доступом

системы видеонаблюдения

системы защиты со стороны водной среды

средства защиты информации

бронеизделия

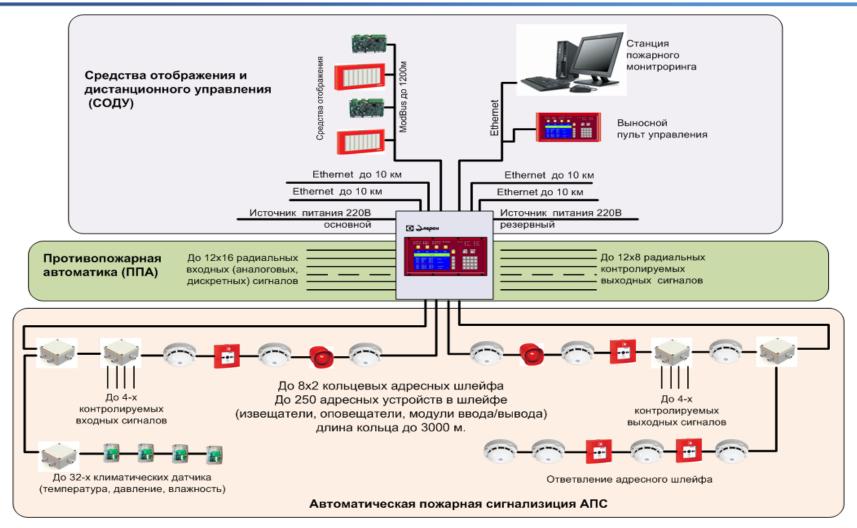
системы противопожарной защиты

комплексное инжиниринговое решение:

НИОКР

Проектирование

Производство и поставка


Строительство

Монтаж и пуско-наладка

Сервис

Система пожарной безопасности «Тобол-ПЗ»

Система полностью соответствует требованиям по импортозамещению

Системы безопасности

Интегрированные системы безопасности

Системы охранной сигнализации стационарные

Кибербезопасность

- ✓ средства защиты информации от несанкционированного доступа, включая средства, в которых они реализованы, а также средства контроля эффективности защиты информации от несанкционированного доступа;
- ✓ средства обеспечения безопасности информационных технологий, включая защищенные средства обработки информации.
- анализ безопасности программного кода на наличие уязвимостей;
- ✓ тестирование программных продуктов на проникновение;
- ✓ аудит информационной безопасности информационных систем;
- подготовка комплекта документации на программное изделие для прохождения сертификации

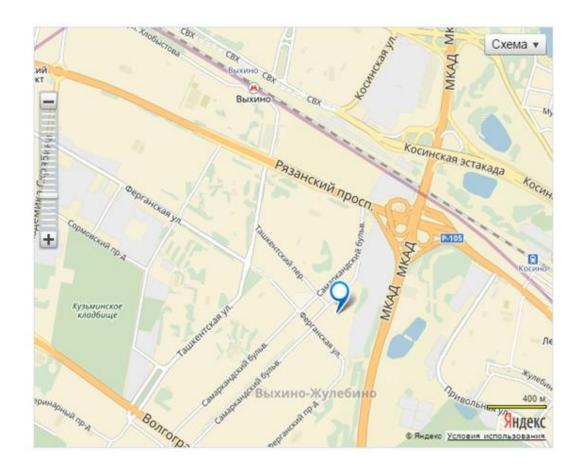
Гарантия качества

- Выполняем проектные работы с использованием системы автоматизированного проектирования (САПР) E3Series. Наработками решений по автоматизации САПР готовы делиться.
- Выполняем изготовление и поставку оборудования систем релейной защиты, контроля и управления, противоаварийной автоматики по техническим условиям ТУ 3433-001-59085090-2012 (Средства К-11), квалифицированным по требованиям Стандарта Росэнергоатома СТО.1.1.1.07.001.0675-2008
- Обеспечиваем в зависимости от потребностей и запросов Заказчика изготовление и поставку готовых к эксплуатации комплексных системных решений или отдельных единиц шкафного оборудования
- Предлагаем выполнение инжиниринговых работ как в части программирования промышленных контроллеров и микропроцессорных устройств, так и установки специализированных параметров работы устройств и протоколов связи
- Предлагаем набор удобных решений в части человеко-машинного интерфейса (SCADA), на основе большого опыта взаимодействия с оперативным персоналом (графики, протоколы, отчеты, плакаты и многое другое)
- Используем в работе специализированные испытательные средства (снифферы протоколов, тестеры сред), что позволяет диагностировать и локализовать проблемы микропроцессорных систем, возникающие в процессе пуско-наладочных работ

Сотрудничество с Электроэнергетическим Советом СНГ

- Представление АО «РАСУ» на площадке ЭЭС СНГ;
- Участие АО «РАСУ» в работе международных энергетических организаций и рабочих органов ЭЭС СНГ в качестве Наблюдателя;
- Обмен передовым опытом с электроэнергетическими компаниями, представленными на площадке ЭЭС СНГ;
- Обмен информационными материалами, в части развития новейших инновационных технологий в сфере электроэнергетики и представляющими взаимный интерес;
- Участие АО «РАСУ» в заседаниях рабочих групп и других органов ЭЭС СНГ, а также в семинарах, конференциях и других мероприятиях, проводимых ЭЭС СНГ;
- Участие АО «РАСУ» в выставках новых технологий и оборудования, проводимым на площадке ЭЭС СНГ;
- Создание отношений партнерства и сотрудничества с электроэнергетическими компаниями государств участников СНГ;
- Участие АО «РАСУ» в разработке проектов документов Электроэнергетического Совета, представляющих взаимный интерес;
- Представление в Исполнительный комитет ЭЭС СНГ инициативных предложений по сотрудничеству в области электроэнергетики с электроэнергетическими компаниями государств участников СНГ;

АО «РАСУ»


25, Ferganskaya str., 109507, Moscow,

Russia

Phone: +7 (495) 933 43 40 ext.459

Mobile: +7 (916) 722 51 74

www.rasu.ru

